Long-Distance PCR-based Screening for Large Rearrangements of the LDL Receptor Gene in Korean Patients with Familial Hypercholesterolemia

Author:

Kim Sung Han1,Bae Ji Hyun2,Chae Jae Jin2,Kim Un Kyung2,Choe Seong-Joon3,Namkoong Yong4,Kim Hyo-Soo3,Park Young-Bae3,Lee Chung Choo1

Affiliation:

1. Department of Biology and SRC for Cell Differentiation, and

2. Department of Molecular Biology, Seoul National University, Seoul 151-742, Korea

3. Department of Internal Medicine, Seoul National University Hospital, Seoul 110-799, Korea

4. Department of Biology, Kangnung National University, Kangnung 210-702, Korea

Abstract

AbstractBackground: The LDL receptor is a cell-surface protein that regulates plasma cholesterol by specific uptake of LDL particles from the blood circulation. Familial hypercholesterolemia (FH) results from defective catabolism of LDL, which is caused by mutations in the LDL-receptor gene.Methods: For the rapid and reliable detection of large rearrangements in the LDL-receptor gene, we established a screening method based on long-distance PCR as an alternative to Southern-blot hybridization. Using long-distance PCR, 45 unrelated Korean subjects heterozygous for FH were screened to assess the frequency and nature of major structural rearrangements in the LDL-receptor gene.Results: Two different deletion mutations, FH6 (same type as FH3 and FH311) and FH 32, were detected in four families by long-distance PCR. Detailed restriction mapping and sequence analysis showed that FH6 was a 5.71-kb deletion extending from intron 8 to intron 12 and that FH32 was a 2-kb deletion extending from intron 6 to intron 7. Sequence analysis for the breakpoints of all deletions detected in Korean FH patients showed that only the left arms of the Alu repetitive sequences were involved in the deletion event.Conclusions: The screening method based on long-distance PCR provides a powerful strategy for the detection of large rearrangements in the LDL-receptor gene and is a rapid and reliable screening alternative to Southern-blot hybridization.

Publisher

Oxford University Press (OUP)

Subject

Biochemistry, medical,Clinical Biochemistry

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3