High-Throughput Quantification of Lysophosphatidylcholine by Electrospray Ionization Tandem Mass Spectrometry

Author:

Liebisch Gerhard,Drobnik Wolfgang,Lieser Bernd,Schmitz Gerd

Abstract

AbstractBackground: Lysophosphatidylcholine (LPC) has been suggested to play a functional role in various diseases, including atherosclerosis, diabetes, and cancer mediated by LPC-specific G-protein-coupled receptors. Initial studies provided evidence for a potential use of LPC as diagnostic maker. However, existing methodologies are of limited value for a systematic evaluation of LPC species concentrations because of complicated, time-consuming procedures. We describe a methodology based on electrospray ionization tandem mass spectrometry (ESI-MS/MS) applicable for high-throughput LPC quantification.Methods: Crude lipid extracts of EDTA-plasma samples were used for direct flow injection analysis. LPC 13:0 and LPC 19:0 were added as internal standards, and the ESI-MS/MS was operated in the parent-scan mode for m/z 184. Quantification was achieved by standard addition. Data processing was highly automated by use of the mass spectrometer software and self-programmed Excel macros.Results: The calibrators LPC 16:0, LPC 18:0, and LPC 22:0 showed a linear response independent of sample dilution and plasma cholesterol concentration for both internal standards. The within-run imprecision (CV) was 3% for the major and 12% for the minor species, whereas the total imprecision was ∼12% for the major and 25% for the minor species. The detection limit was <1 μmol/L.Conclusion: The developed ESI-MS/MS methodology with an analysis time of 2 min/sample, simple sample preparation, and automated data analysis allows high-throughput quantification of distinct LPC species from plasma samples, which could be a valuable tool for the evaluation of LPC as diagnostic marker.

Publisher

Oxford University Press (OUP)

Subject

Biochemistry, medical,Clinical Biochemistry

Cited by 159 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3