Dynamic Modulation of Beta Band Cortico-Muscular Coupling Induced by Audio–Visual Rhythms

Author:

Varlet Manuel12ORCID,Nozaradan Sylvie13,Trainor Laurel456,Keller Peter E1

Affiliation:

1. The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Penrith, Australia

2. School of Psychology, Western Sydney University, Penrith, Australia

3. Institute of Neuroscience (IONS), Université catholique de Louvain (UCL), Brussels, Belgium

4. Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada

5. McMaster Institute for Music and the Mind, McMaster University, Hamilton, Ontario, Canada

6. Rotman Research Institute, Baycrest Hospital, Toronto, Ontario, Canada

Abstract

Abstract Human movements often spontaneously fall into synchrony with auditory and visual environmental rhythms. Related behavioral studies have shown that motor responses are automatically and unintentionally coupled with external rhythmic stimuli. However, the neurophysiological processes underlying such motor entrainment remain largely unknown. Here, we investigated with electroencephalography (EEG) and electromyography (EMG) the modulation of neural and muscular activity induced by periodic audio and/or visual sequences. The sequences were presented at either 1 or 2 Hz, while participants maintained constant finger pressure on a force sensor. The results revealed that although there was no change of amplitude in participants’ EMG in response to the sequences, the synchronization between EMG and EEG recorded over motor areas in the beta (12–40 Hz) frequency band was dynamically modulated, with maximal coherence occurring about 100 ms before each stimulus. These modulations in beta EEG–EMG motor coherence were found for the 2-Hz audio–visual sequences, confirming at a neurophysiological level the enhancement of motor entrainment with multimodal rhythms that fall within preferred perceptual and movement frequency ranges. Our findings identify beta band cortico-muscular coupling as a potential underlying mechanism of motor entrainment, further elucidating the nature of the link between sensory and motor systems in humans.

Funder

Australian Research Council

Publisher

Oxford University Press (OUP)

Subject

General Medicine

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3