Diffuse Optical Tomography Using fNIRS Signals Measured from the Skull Surface of the Macaque Monkey

Author:

Hayashi Ryusuke1ORCID,Yamashita Okito23,Yamada Toru1,Kawaguchi Hiroshi1,Higo Noriyuki1ORCID

Affiliation:

1. Neurorehabilitation Research Group, Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba-shi, Ibaraki 305-8568, Japan

2. Computational Brain Dynamics Team, Center for Advanced Intelligence Project, RIKEN, Nihonbashi 1-chome Mitsui Building, 15th floor, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan

3. Neural Information Analysis Laboratories, Department of Computational Brain Imaging, ATR, 2-2-2 Hikaridai Seika-cho, Sorakugun, Kyoto 619-0288, Japan

Abstract

Abstract Diffuse optical tomography (DOT), as a functional near-infrared spectroscopy (fNIRS) technique, can estimate three-dimensional (3D) images of the functional hemodynamic response in brain volume from measured optical signals. In this study, we applied DOT algorithms to the fNIRS data recorded from the surface of macaque monkeys’ skulls when the animals performed food retrieval tasks using either the left- or right-hand under head-free conditions. The hemodynamic response images, reconstructed by DOT with a high sampling rate and fine voxel size, demonstrated significant activations at the upper limb regions of the primary motor area in the central sulcus and premotor, and parietal areas contralateral to the hands used in the tasks. The results were also reliable in terms of consistency across different recording dates. Time-series analyses of each brain area revealed preceding activity of premotor area to primary motor area consistent with previous physiological studies. Therefore, the fNIRS–DOT protocol demonstrated in this study provides reliable 3D functional brain images over a period of days under head-free conditions for region-of-interest–based time-series analysis.

Funder

AMED Research & Development Program

JST Moonshot R&D

JSPS KAKENHI

Publisher

Oxford University Press (OUP)

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3