A comparison of multisensory features of two auditory cortical areas: primary (A1) and higher-order dorsal zone (DZ)

Author:

Merrikhi Yaser1ORCID,Kok Melanie A2,Lomber Stephen G1,Meredith M Alex3

Affiliation:

1. McGill University, Montreal Department of Physiology, Faculty of Medicine, , Quebec H3G 1Y6, Canada

2. University of Western Ontario Graduate Program in Neuroscience, , London, Ontario N6A 5K8, Canada

3. School of Medicine, Virginia Commonwealth University, Richmond Department of Anatomy and Neurobiology, , Virginia 23298, USA

Abstract

Abstract From myriads of ongoing stimuli, the brain creates a fused percept of the environment. This process, which culminates in perceptual binding, is presumed to occur through the operations of multisensory neurons that occur throughout the brain. However, because different brain areas receive different inputs and have different cytoarchitechtonics, it would be expected that local multisensory features would also vary across regions. The present study investigated that hypothesis using multiple single-unit recordings from anesthetized cats in response to controlled, electronically-generated separate and combined auditory, visual, and somatosensory stimulation. These results were used to compare the multisensory features of neurons in cat primary auditory cortex (A1) with those identified in the nearby higher-order auditory region, the Dorsal Zone (DZ). Both regions exhibited the same forms of multisensory neurons, albeit in different proportions. Multisensory neurons exhibiting excitatory or inhibitory properties occurred in similar proportions in both areas. Also, multisensory neurons in both areas expressed similar levels of multisensory integration. Because responses to auditory cues alone were so similar to those that included non-auditory stimuli, it is proposed that this effect represents a mechanism by which multisensory neurons subserve the process of perceptual binding.

Publisher

Oxford University Press (OUP)

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3