Effect of the Trigeminal Nerve Stimulation on Auditory Event-Related Potentials

Author:

Tramonti Fantozzi Maria Paola1,Artoni Fiorenzo2,Di Galante Marco3,Briscese Lucia1,De Cicco Vincenzo1,Bruschini Luca4,d’Ascanio Paola1,Manzoni Diego1ORCID,Faraguna Ugo15ORCID,Carboncini Maria Chiara1

Affiliation:

1. Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa 56123, Italy

2. Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics, Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Genève 1202, Switzerland

3. SleepActa s.r.l., Pontedera 56025, Italy

4. Department of Surgical, Medical, Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa 56123, Italy

5. Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa 56128, Italy

Abstract

Abstract Trigeminal sensorimotor activity stimulates arousal and cognitive performance, likely through activation of the locus coeruleus (LC). In this study we investigated, in normal subjects, the effects of bilateral trigeminal nerve stimulation (TNS) on the LC-dependent P300 wave, elicited by an acoustic oddball paradigm. Pupil size, a proxy of LC activity, and electroencephalographic power changes were also investigated. Before TNS/sham-TNS, pupil size did not correlate with P300 amplitude across subjects. After TNS but not sham-TNS, a positive correlation emerged between P300 amplitude and pupil size within frontal and median cortical regions. TNS also reduced P300 amplitude in several cortical areas. In both groups, before and after TNS/sham-TNS, subjects correctly indicated all the target stimuli. We propose that TNS activates LC, increasing the cortical norepinephrine release and the dependence of the P300 upon basal LC activity. Enhancing the signal-to-noise ratio of cortical neurons, norepinephrine may improve the sensory processing, allowing the subject to reach the best discriminative performance with a lower level of neural activation (i.e., a lower P300 amplitude). The study suggests that TNS could be used for improving cognitive performance in patients affected by cognitive disorders or arousal dysfunctions.

Funder

University of Pisa

Ministry of Health

Advanced Research Projects Agency

Publisher

Oxford University Press (OUP)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3