Individual theta-band cortical entrainment to speech in quiet predicts word-in-noise comprehension

Author:

Becker Robert1ORCID,Hervais-Adelman Alexis12ORCID

Affiliation:

1. Neurolinguistics, Department of Psychology, University of Zurich , Zurich 8050 , Switzerland

2. Neuroscience Center Zurich, University of Zurich and Eidgenössische Technische Hochschule Zurich , Zurich 8057 , Switzerland

Abstract

Abstract Speech elicits brain activity time-locked to its amplitude envelope. The resulting speech-brain synchrony (SBS) is thought to be crucial to speech parsing and comprehension. It has been shown that higher speech-brain coherence is associated with increased speech intelligibility. However, studies depending on the experimental manipulation of speech stimuli do not allow conclusion about the causality of the observed tracking. Here, we investigate whether individual differences in the intrinsic propensity to track the speech envelope when listening to speech-in-quiet is predictive of individual differences in speech-recognition-in-noise, in an independent task. We evaluated the cerebral tracking of speech in source-localized magnetoencephalography, at timescales corresponding to the phrases, words, syllables and phonemes. We found that individual differences in syllabic tracking in right superior temporal gyrus and in left middle temporal gyrus (MTG) were positively associated with recognition accuracy in an independent words-in-noise task. Furthermore, directed connectivity analysis showed that this relationship is partially mediated by top-down connectivity from premotor cortex—associated with speech processing and active sensing in the auditory domain—to left MTG. Thus, the extent of SBS—even during clear speech—reflects an active mechanism of the speech processing system that may confer resilience to noise.

Funder

Swiss National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3