Identification of Differentially Expressed miRNAs between a Wheat K-type Cytoplasmic Male Sterility Line and Its Near-Isogenic Restorer Line

Author:

Li Hongxia1,Guo Jinglei1,Zhang Chengyang1,Zheng Weijun1,Song Yulong1,Wang Yu1ORCID

Affiliation:

1. College of Agronomy, Northwest A&F University, Yangling, Shaanxi, P. R. China

Abstract

Abstract K-type cytoplasmic male sterility (KCMS) lines were ideal material for three-line hybrid wheat system due to the major role in hybrid wheat production. In this study, the morphology of developing microspore and mature pollen was compared between a KCMS line and its near-isogenic restorer line (KCMS-NIL). The most striking difference is that the microspore was unable to develop into tricellular pollen in the KCMS line. MicroRNA plays vital roles in flowering and gametophyte development. Small RNA sequencing identified a total of 274 known and 401 novel miRNAs differentially expressed between two lines or two developmental stages. Most of miRNAs with high abundance were differentially expressed at the uninucleate stage, and their expression level recovered or remained at the binucleate stage. Further degradome sequencing identified target genes which were mainly enriched in transcription regulation, phytohormone signaling and RNA degradation pathways. Combining with the transcriptome data, a correlation was found between the abnormal anther development, such as postmeiotic mitosis cessation, deformative pollen wall and the chromosome condensation of the vegetative cell, and the alterations in the related miRNA and their targets expression profiles. According to the correlation and pathway analysis, we propose a hypothetic miRNA-mediated network for the control of KCMS restoration.

Funder

National Key Research and Development Plan

National Natural Science Foundation of China

Natural Science Foundation Research Program of Shaanxi Province

Yangling Demonstration Zone Agricultural Science and Technology Innovation and Research

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Plant Science,Physiology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3