Sperm Entry into the Egg Cell Induces the Progression of Karyogamy in Rice Zygotes

Author:

Ohnishi Yukinosuke12ORCID,Kokubu Iwao1,Kinoshita Tetsu2,Okamoto Takashi1

Affiliation:

1. Department of Biological Sciences, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji, Tokyo, Japan

2. Kihara Institute for Biological Research, Yokohama City University, Maioka 641-12, Totsuka, Yokohama, Kanagawa, Japan

Abstract

Abstract Karyogamy is a prerequisite event for plant embryogenesis, in which dynamic changes in nuclear architecture and the establishment of appropriate gene expression patterns must occur. However, the precise role of the male and female gametes in the progression of karyogamy still remains elusive. Here, we show that the sperm cell possesses the unique property to drive steady and swift nuclear fusion. When we fertilized egg cells with sperm cells in vitro, the immediate fusion of the male and female nuclei in the zygote progressed. This rapid nuclear fusion did not occur when two egg cells were artificially fused. However, the nuclear fusion of two egg nuclei could be accelerated by additional sperm entry or the exogenous application of calcium, suggesting that possible increase of cytosolic Ca2+ level via sperm entry into the egg cell efficiently can facilitate karyogamy. In contrast to zygotes, the egg–egg fusion cells failed to proliferate beyond an early developmental stage. Our transcriptional analyses also revealed the rapid activation of zygotic genes in zygotes, whereas there was no expression in fused cells without the male contribution. Thus, the male sperm cell has the ability to cause immediate karyogamy and to establish appropriate gene expression patterns in the zygote.

Funder

JSPS

Grant-in-Aid for JSPS Research Fellow

MEXT KAKENHI

Grants-in-Aid for Scientific Research on Innovative Areas

KAKENHI

Grants-in-Aid for Challenging Exploratory Research

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Plant Science,Physiology,General Medicine

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3