Affiliation:
1. Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Univ Paris Sud, Univ Evry, Univ Paris-Diderot, Universite Paris-Saclay, Orsay Cedex, France
Abstract
Abstract
As sessile organisms, plants are continuously exposed to a wide range of biotic interactions. While some biotic interactions are beneficial or even essential for the plant (e.g. rhizobia and mycorrhiza), others such as pathogens are detrimental and require fast adaptation. Plants partially achieve this growth and developmental plasticity by modulating the repertoire of genes they express. In the past few years, high-throughput transcriptome sequencing have revealed that, in addition to transcriptional control of gene expression, post-transcriptional processes, notably alternative splicing (AS), emerged as a key mechanism for gene regulation during plant adaptation to the environment. AS not only can increase proteome diversity by generating multiple transcripts from a single gene but also can reduce gene expression by yielding isoforms degraded by mechanisms such as nonsense-mediated mRNA decay. In this review, we will summarize recent discoveries detailing the contribution of AS to the regulation of plant–microbe interactions, with an emphasis on the modulation of immunity receptor function and other components of the signaling pathways that deal with pathogen responses. We will also discuss emerging evidences that AS could contribute to dynamic reprogramming of the plant transcriptome during beneficial interactions, such as the legume–symbiotic interaction.
Funder
LABEX
Saclay Plant Sciences
Minist�re de l’Enseignement Sup�rieur et de la Recherche
Publisher
Oxford University Press (OUP)
Subject
Cell Biology,Plant Science,Physiology,General Medicine
Cited by
70 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献