Affiliation:
1. Department of Clinical Medicine, Aalborg University, Denmark
2. Department of Haematology, Aalborg University Hospital, Denmark
3. Clinical Cancer Research Center, Aalborg University Hospital, Denmark
Abstract
AbstractCompelling research has recently shown that cancer is so heterogeneous that single research centres cannot produce enough data to fit prognostic and predictive models of sufficient accuracy. Data sharing in precision oncology is therefore of utmost importance. The Findable, Accessible, Interoperable and Reusable (FAIR) Data Principles have been developed to define good practices in data sharing. Motivated by the ambition of applying the FAIR Data Principles to our own clinical precision oncology implementations and research, we have performed a systematic literature review of potentially relevant initiatives. For clinical data, we suggest using the Genomic Data Commons model as a reference as it provides a field-tested and well-documented solution. Regarding classification of diagnosis, morphology and topography and drugs, we chose to follow the World Health Organization standards, i.e. ICD10, ICD-O-3 and Anatomical Therapeutic Chemical classifications, respectively. For the bioinformatics pipeline, the Genome Analysis ToolKit Best Practices using Docker containers offer a coherent solution and have therefore been selected. Regarding the naming of variants, we follow the Human Genome Variation Society's standard. For the IT infrastructure, we have built a centralized solution to participate in data sharing through federated solutions such as the Beacon Networks.
Publisher
Oxford University Press (OUP)
Subject
Molecular Biology,Information Systems
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献