Simultaneous Enrichment Analysis of all Possible Gene-sets: Unifying Self-Contained and Competitive Methods

Author:

Ebrahimpoor Mitra1,Spitali Pietro2,Hettne Kristina1,Tsonaka Roula1,Goeman Jelle1

Affiliation:

1. Medical statistics, Department of Biomedical Data Science, Leiden University Medical Center, Leiden, The Netherlands

2. Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands

Abstract

Abstract Studying sets of genomic features is increasingly popular in genomics, proteomics and metabolomics since analyzing at set level not only creates a natural connection to biological knowledge but also offers more statistical power. Currently, there are two gene-set testing approaches, self-contained and competitive, both of which have their advantages and disadvantages, but neither offers the final solution. We introduce simultaneous enrichment analysis (SEA), a new approach for analysis of feature sets in genomics and other omics based on a new unified null hypothesis, which includes the self-contained and competitive null hypotheses as special cases. We employ closed testing using Simes tests to test this new hypothesis. For every feature set, the proportion of active features is estimated, and a confidence bound is provided. Also, for every unified null hypotheses, a $P$-value is calculated, which is adjusted for family-wise error rate. SEA does not need to assume that the features are independent. Moreover, users are allowed to choose the feature set(s) of interest after observing the data. We develop a novel pipeline and apply it on RNA-seq data of dystrophin-deficient mdx mice, showcasing the flexibility of the method. Finally, the power properties of the method are evaluated through simulation studies.

Funder

Netherlands Organization for Scientific Research

European Community’s Seventh Framework Programme

Integrated European Project on Omics Research of Rare Neuromuscular and Neurodegenerative Diseases

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Reference70 articles.

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3