Data-driven rational biosynthesis design: from molecules to cell factories

Author:

Chen Fu123,Yuan Le24,Ding Shaozhen3,Tian Yu24,Hu Qian-Nan3

Affiliation:

1. College of Biotechnology, Tianjin University of Science and Technology, Tianjin, People’s Republic of China

2. Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, People’s Republic of China

3. CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China

4. University of Chinese Academy of Sciences, Beijing, People’s Republic of China

Abstract

Abstract A proliferation of chemical, reaction and enzyme databases, new computational methods and software tools for data-driven rational biosynthesis design have emerged in recent years. With the coming of the era of big data, particularly in the bio-medical field, data-driven rational biosynthesis design could potentially be useful to construct target-oriented chassis organisms. Engineering the complicated metabolic systems of chassis organisms to biosynthesize target molecules from inexpensive biomass is the main goal of cell factory design. The process of data-driven cell factory design could be divided into several parts: (1) target molecule selection; (2) metabolic reaction and pathway design; (3) prediction of novel enzymes based on protein domain and structure transformation of biosynthetic reactions; (4) construction of large-scale DNA for metabolic pathways; and (5) DNA assembly methods and visualization tools. The construction of a one-stop cell factory system could achieve automated design from the molecule level to the chassis level. In this article, we outline data-driven rational biosynthesis design steps and provide an overview of related tools in individual steps.

Funder

Natural Science Foundation of Tianjin

Chinese Academy of Sciences

Society of Thoracic Surgeons

National Science Foundation of China

National Key Research and Development Program of China

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3