MCAM abnormal expression and clinical outcome associations are highly cancer dependent as revealed through pan-cancer analysis

Author:

An Yunxia1,Wei Nan23,Cheng Xiangsong1,Li Ying1,Liu Haiyang1,Wang Jia1,Xu Zhiwei1,Sun Zhifu4,Zhang Xiaoju1

Affiliation:

1. Department of Respiratory Medicine, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China

2. Department of Respiratory Medicine, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China

3. Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China

4. Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA

Abstract

Abstract MCAM (CD146) is a cell surface adhesion molecule that has been reported to promote cancer development, progression and metastasis and is considered as a potential tumor biomarker and therapeutic target. However, inconsistent reports exist, and its clinical value is yet to be confirmed. Here we took advantage of several large genomic data collections (Genotype-Tissue Expression, The Cancer Genome Atlas and Cancer Cell Line Encyclopedia) and comprehensively analyzed MCAM expression in thousands of normal and cancer samples and cell lines along with their clinical phenotypes and drug response information. Our results show that MCAM is very highly expressed in large vessel tissues while majority of tissues have low or minimal expression. Its expression is dramatically increased in a few tumors but significantly decreased in most other tumors relative to their pairing normal tissues. Increased MCAM expression is associated with a higher tumor stage and worse patient survival for some less common tumors but not for major ones. Higher MCAM expression in primary tumors may be complicated by tumor-associated or normal stromal blood vessels yet its significance may differ from the one from cancer cells. MCAM expression is weakly associated with the response to a few small molecular drugs and the association with targeted anti-BRAF agents suggests its involvement in that pathway which warrants further investigation.

Funder

Mayo Clinic Center for Individualized Medicine

People’s Hospital of Zhengzhou University

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3