Characterization and identification of antimicrobial peptides with different functional activities

Author:

Chung Chia-Ru1,Kuo Ting-Rung1,Wu Li-Ching2,Lee Tzong-Yi345,Horng Jorng-Tzong16

Affiliation:

1. Department of Computer Science and Information Engineering, National Central University, Taoyuan, Taiwan

2. Department of Biomedical Sciences and Engineering, National Central University, Taoyuan, Taiwan

3. School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, China

4. School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, China

5. Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, China

6. Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan

Abstract

Abstract In recent years, antimicrobial peptides (AMPs) have become an emerging area of focus when developing therapeutics hot spot residues of proteins are dominant against infections. Importantly, AMPs are produced by virtually all known living organisms and are able to target a wide range of pathogenic microorganisms, including viruses, parasites, bacteria and fungi. Although several studies have proposed different machine learning methods to predict peptides as being AMPs, most do not consider the diversity of AMP activities. On this basis, we specifically investigated the sequence features of AMPs with a range of functional activities, including anti-parasitic, anti-viral, anti-cancer and anti-fungal activities and those that target mammals, Gram-positive and Gram-negative bacteria. A new scheme is proposed to systematically characterize and identify AMPs and their functional activities. The 1st stage of the proposed approach is to identify the AMPs, while the 2nd involves further characterization of their functional activities. Sequential forward selection was employed to extract potentially informative features that are possibly associated with the functional activities of the AMPs. These features include hydrophobicity, the normalized van der Waals volume, polarity, charge and solvent accessibility—all of which are essential attributes in classifying between AMPs and non-AMPs. The results revealed the 1st stage AMP classifier was able to achieve an area under the receiver operating characteristic curve (AUC) value of 0.9894. During the 2nd stage, we found pseudo amino acid composition to be an informative attribute when differentiating between AMPs in terms of their functional activities. The independent testing results demonstrated that the AUCs of the multi-class models were 0.7773, 0.9404, 0.8231, 0.8578, 0.8648, 0.8745 and 0.8672 for anti-parasitic, anti-viral, anti-cancer, anti-fungal AMPs and those that target mammals, Gram-positive and Gram-negative bacteria, respectively. The proposed scheme helps facilitate biological experiments related to the functional analysis of AMPs. Additionally, it was implemented as a user-friendly web server (AMPfun, http://fdblab.csie.ncu.edu.tw/AMPfun/index.html) that allows individuals to explore the antimicrobial functions of peptides of interest.

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3