Affiliation:
1. Tokyo University of Science Department of Biological Science and Technology, , 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
Abstract
Abstract
Rheumatoid factor (RF) is an autoantibody against IgG that affects autoimmune diseases and inhibits the effectiveness of pharmaceuticals and diagnostic agents. Although RFs derived from various germline genes have been identified, little is known about their molecular recognition mechanisms. In this study, the Fv-clasp format was used to prepare YES8c, an RF. We developed an Escherichia coli secretion expression system capable of producing milligram-scale of YES8c Fv-clasp per 1 L of culture. Although YES8c is an autoantibody with very low affinity, the produced Fv-clasp maintained specific binding to IgG. Interestingly, the molecules prepared by E. coli secretion had a higher affinity than those prepared by refolding. In the structure of the YES8c–Fc complex, the N-terminus of the light chain is close to Fc; therefore, it is suggested that the addition of the N-terminal methionine may cause collisions with Fc, resulting in reduced affinity. Our findings suggest that the Fv-clasp, which provides sufficient stability and a high bacterial yield, is a useful format for studying RFs with very low affinity. Furthermore, the Fv-clasp produced from a secretion expression system, which can properly process the N-terminus, would be suitable for analysis of RFs in which the N-terminus may be involved in interactions.
Publisher
Oxford University Press (OUP)
Subject
Molecular Biology,Biochemistry,General Medicine