Mechanisms modulating the activities of intestinal stem cells upon radiation or chemical agent exposure

Author:

Liao Zebin1,Hu Changkun12,Gao Yue1

Affiliation:

1. Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, 100850, P.R. China

2. School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui Province 230032, P.R. China

Abstract

Abstract Intestinal stem cells (ISCs) are essential for the regeneration of intestinal cells upon radiation or chemical agent damage. As for radiation-induced damage, the expression of AIM2, YAP, TLR3, PUMA or BVES can aggravate ISCs depletion, while the stimulation of TLR5, HGF/MET signaling, Ass1 gene, Slit/Robo signaling facilitate the radio-resistance of ISCs. Upon chemical agent treatment, the activation of TRAIL or p53/PUMA pathway exacerbate injury on ISCs, while the increased levels of IL-22, β-arrestin1 can ease the damage. The transformation between reserve ISCs (rISCs) maintaining quiescent states and active ISCs (aISCs) that are highly proliferative has obtained much attention in recent years, in which ISCs expressing high levels of Hopx, Bmi1, mTert, Krt19 or Lrig1 are resistant to radiation injury, and SOX9, MSI2, clusterin, URI are essential for rISCs maintenance. The differentiated cells like Paneth cells and enteroendocrine cells can also obtain stemness driven by radiation injury mediated by Wnt or Notch signaling. Besides, Mex3a-expressed ISCs can survive and then proliferate into intestinal epithelial cells upon chemical agent damage. In addition, the modulation of symbiotic microbes harboring gastrointestinal (GI) tract is also a promising strategy to protect ISCs against radiation damage. Overall, the strategies targeting mechanisms modulating ISCs activities are conducive to alleviating GI injury of patients receiving chemoradiotherapy or victims of nuclear or chemical accident.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Health, Toxicology and Mutagenesis,Radiology, Nuclear Medicine and imaging,Radiation

Reference76 articles.

1. Regulation of intestinal lipid metabolism: current concepts and relevance to disease;Ko;Nat Rev Gastroenterol Hepatol,2020

2. Dynamic reorganization of chromatin accessibility signatures during dedifferentiation of secretory precursors into Lgr 5+ intestinal stem cells;Jadhav;Cell Stem Cell,2017

3. Identifying the stem cell of the intestinal crypt: strategies and pitfalls;Barker;Cell Stem Cell,2012

4. Stem cell signaling;Clevers;An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control. Science,2014

5. Dll 1+ secretory progenitor cells revert to stem cells upon crypt damage;Es;Nat Cell Biol,2012

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3