Affiliation:
1. Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, 510000, China
Abstract
Abstract
Radiation-induced brain injury (RBI) is a common complication of radiotherapy for head and neck tumors while its mechanism is not fully understood. Animal whole-brain radiation (WBR) models are of key importance in experimental radiation research, and an appropriate radiation source is essential. Previous animal WBR models were administered by clinical linear accelerator to induce the pathophysiological changes of RBI. In the current study, we adopted Faxitron MultiRad 225 X-ray irradiation system to construct a mouse WBR model with a single dose of 30 Gy. In the acute phase of this mouse WBR model, brain edema and blood–brain barrier (BBB) damage were found mild. However, two months later, the results of immunofluorescence showed that astrocytes and microglia were activated continuously, and the number of immature neurons in dentate gyrus (DG) area of hippocampus was significantly reduced, in accordance with the features of chronic pathophysiological changes. Besides, data of MRI scans and behavior tests illustrated the structural changes of brain tissue and cognitive impairment in the chronic phase. To sum up, this mouse WBR model using the Faxitron MultiRad 225 irradiation system with a single dose of 30 Gy is feasible to simulate the RBI-related chronic pathophysiological changes.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Guangdong Province
Guangzhou Science and Technology Planning Project
Publisher
Oxford University Press (OUP)
Subject
Health, Toxicology and Mutagenesis,Radiology, Nuclear Medicine and imaging,Radiation
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献