Frameless immobilization system with roll correction for stereotactic radiosurgery of intracranial brain metastases

Author:

Park So-Yeon12,Choi Noorie1,Jang Na Young1

Affiliation:

1. Department of Radiation Oncology, Veterans Health Service Medical Center, Seoul, 05368, Republic of Korea

2. Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, 03080, Republic of Korea

Abstract

Abstract The objectives of this study were to develop a frameless immobilization system that allows roll rotation corrections and to investigate the performance of this system for stereotactic radiosurgery (SRS) treatment. We designed the support frame of a frameless immobilization system based on the commercial Brainlab immobilization system. The support frame consisted of a fixed component and a rotating component. With rack and pinion gears and guide holes installed in the system, the rotating component was configured to be rotated along the longitudinal axis of the patient with respect to the fixed component. To evaluate the performance of the system, the six degree-of-freedom (6D) positioning corrections (translational and rotational corrections) were assessed by image verification between planning computed tomography (CT) and cone-beam computed tomography (CBCT) images. The commercial immobilization system was evaluated in the same manner for comparison. The mean translational shifts for the commercial system were 0.68 ± 0.19 mm, 0.73 ± 0.24 mm and 0.78 ± 0.19 mm, while those for the developed system were 0.44 ± 0.31 mm, 0.43 ± 0.25 mm and 0.60 ± 0.14 mm in the lateral, longitudinal and vertical directions, respectively. The mean rotational shifts for the commercial system were 0.37° ± 0.12°, 0.32° ± 0.16° and 0.38° ± 0.14°, while those for the developed system were 0.04° ± 0.04°, 0.11° ± 0.06° and 0.15° ± 0.12° along the lateral, vertical and longitudinal axes of the patient, respectively. For institutions that do not have 6D robotic couches installed, the use of the developed immobilization system can provide 6D corrections, resulting in shorter treatment times and higher patient positioning accuracy.

Funder

Basic Science Research Program

National Research Foundation of Korea

Ministry of Education

VHS Medical Center Research Grant

Publisher

Oxford University Press (OUP)

Subject

Health, Toxicology and Mutagenesis,Radiology Nuclear Medicine and imaging,Radiation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3