Dosimetry of radon progeny deposited on skin in air and thermal water

Author:

Sakoda Akihiro1,Ishimori Yuu12,Kanzaki Norie1,Tanaka Hiroshi1,Kataoka Takahiro3,Mitsunobu Fumihiro4,Yamaoka Kiyonori3

Affiliation:

1. Ningyo-toge Environmental Engineering Center, Japan Atomic Energy Agency, 1550 Kamisaibara, Kagamino-cho, Tomata-gun, Okayama 708-0698, Japan

2. Prototype Fast Breeder Reactor Monju, Japan Atomic Energy Agency, 2-1 Shiraki, Tsuruga-shi, Fukui 919-1279, Japan

3. Graduate School of Health Sciences, Okayama University, 5-1 Shikata-cho 2-chome, Kita-ku, Okayama-shi, Okayama 700-8558, Japan

4. Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University, 5-1 Shikata-cho 2-chome, Kita-ku, Okayama-shi, Okayama 700-8558, Japan

Abstract

Abstract It is held that the skin dose from radon progeny is not negligibly small and that introducing cancer is a possible consequence under normal circumstances as there are a number of uncertainties in terms of related parameters such as activity concentrations in air and water, target cells in skin, skin covering materials, and deposition velocities. An interesting proposal has emerged in that skin exposure to natural radon-rich thermal water as part of balneotherapy can produce an immune response to induce beneficial health effects. The goal of this study was to obtain generic dose coefficients with a focus on the radon progeny deposited on the skin in air or water in relation to risk or treatment assessments. We thus first estimated the skin deposition velocities of radon progeny in air and thermal water based on data from the latest human studies. Skin dosimetry was then performed under different assumptions regarding alpha-emitting source position and target cell (i.e. basal cells or Langerhans cells). Furthermore, the impact of the radon progeny deposition on effective doses from all exposure pathways relating to ‘radon exposure’ was assessed using various possible scenarios. It was found that in both exposure media, effective doses from radon progeny inhalation are one to four orders of magnitude higher than those from the other pathways. In addition, absorbed doses on the skin can be the highest among all pathways when the radon activity concentrations in water are two or more orders of magnitude higher than those in air.

Publisher

Oxford University Press (OUP)

Subject

Health, Toxicology and Mutagenesis,Radiology Nuclear Medicine and imaging,Radiation

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exposure to radon gas in groundwater in southwest Angola (Lubango-Huíla): Implications of geology and climate change;Journal of Environmental Radioactivity;2024-09

2. Parameter uncertainty analysis of the equivalent lung dose coefficient for the intake of radon in mines: A review;Journal of Environmental Radioactivity;2024-06

3. Radon Solubility and Diffusion in the Skin Surface Layer;International Journal of Environmental Research and Public Health;2022-06-24

4. External doses from plated-out decay products in radon-rich enclosed spaces;Radiation Effects and Defects in Solids;2022-02-01

5. Dosimetric Comparison of Exposure Pathways to Human Organs and Tissues in Radon Therapy;International Journal of Environmental Research and Public Health;2021-10-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3