Affiliation:
1. Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
Abstract
AbstractRecent studies suggest noncoding RNAs interact with genomic DNA, forming an RNA•DNA–DNA triple helix that regulates gene expression. However, base triplet composition of pyrimidine motif RNA•DNA–DNA triple helices is not well understood beyond the canonical U•A–T and C•G–C base triplets. Using native gel-shift assays, the relative stability of 16 different base triplets at a single position, Z•X–Y (where Z = C, U, A, G and X–Y = A–T, G–C, T–A, C–G), in an RNA•DNA–DNA triple helix was determined. The canonical U•A–T and C•G–C base triplets were the most stable, while three non-canonical base triplets completely disrupted triple-helix formation. We further show that our RNA•DNA–DNA triple helix can tolerate up to two consecutive non-canonical A•G–C base triplets. Additionally, the RNA third strand must be at least 19 nucleotides to form an RNA•DNA–DNA triple helix but increasing the length to 27 nucleotides does not increase stability. The relative stability of 16 different base triplets in DNA•DNA–DNA and RNA•RNA–RNA triple helices was distinctly different from those in RNA•DNA–DNA triple helices, showing that base triplet stability depends on strand composition being DNA and/or RNA. Multiple factors influence the stability of triple helices, emphasizing the importance of experimentally validating formation of computationally predicted triple helices.
Funder
National Institutes of Health
University of Notre Dame
NIH
Publisher
Oxford University Press (OUP)
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献