The SOXE transcription factors—SOX8, SOX9 and SOX10—share a bi-partite transactivation mechanism

Author:

Haseeb Abdul1,Lefebvre Véronique1

Affiliation:

1. Department of Surgery/Division of Orthopaedic Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA

Abstract

Abstract SOX8, SOX9 and SOX10 compose the SOXE transcription factor group. They govern cell fate and differentiation in many lineages, and mutations impairing their activity cause severe diseases, including campomelic dysplasia (SOX9), sex determination disorders (SOX8 and SOX9) and Waardenburg-Shah syndrome (SOX10). However, incomplete knowledge of their modes of action limits disease understanding. We here uncover that the proteins share a bipartite transactivation mechanism, whereby a transactivation domain in the middle of the proteins (TAM) synergizes with a C-terminal one (TAC). TAM comprises amphipathic α-helices predicted to form a protein-binding pocket and overlapping with minimal transactivation motifs (9-aa-TAD) described in many transcription factors. One 9-aa-TAD sequence includes an evolutionarily conserved and functionally required EΦ[D/E]QYΦ motif. SOXF proteins (SOX7, SOX17 and SOX18) contain an identical motif, suggesting evolution from a common ancestor already harboring this motif, whereas TAC and other transactivating SOX proteins feature only remotely related motifs. Missense variants in this SOXE/SOXF-specific motif are rare in control individuals, but have been detected in cancers, supporting its importance in development and physiology. By deepening understanding of mechanisms underlying the central transactivation function of SOXE proteins, these findings should help further decipher molecular networks essential for development and health and dysregulated in diseases.

Funder

National Institute of Arthritis and Musculoskeletal and Skin Diseases

Publisher

Oxford University Press (OUP)

Subject

Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3