Mathematical modelling, selection and hierarchical inference to determine the minimal dose in IFNα therapy against myeloproliferative neoplasms

Author:

Hermange Gurvan1,Vainchenker William234,Plo Isabelle234,Cournède Paul-Henry1

Affiliation:

1. Université Paris-Saclay, CentraleSupélec, Laboratory of Mathematics and Informatics (MICS) , Gif-sur-Yvette, France

2. INSERM U1287 (INSERM, Gustave Roussy, Université Paris-Saclay) , Villejuif, France

3. Gustave Roussy, Villejuif , France

4. Université Paris-Saclay , Villejuif, France

Abstract

Abstract Myeloproliferative neoplasms (MPN) are blood cancers that appear after acquiring a driver mutation in a hematopoietic stem cell. These hematological malignancies result in the overproduction of mature blood cells and, if not treated, induce a risk of cardiovascular events and thrombosis. Pegylated IFN$\alpha $ is commonly used to treat MPN, but no clear guidelines exist concerning the dose prescribed to patients. We applied a model selection procedure and ran a hierarchical Bayesian inference method to decipher how dose variations impact the response to the therapy. We inferred that IFN$\alpha $ acts on mutated stem cells by inducing their differentiation into progenitor cells; the higher the dose, the higher the effect. We found that the treatment can induce long-term remission when a sufficient (patient-dependent) dose is reached. We determined this minimal dose for individuals in a cohort of patients and estimated the most suitable starting dose to give to a new patient to increase the chances of being cured.

Publisher

Oxford University Press (OUP)

Reference57 articles.

1. A new look at the statistical model identification;Akaike;IEEE Trans. Autom. Control,1974

2. Effects of the jak2 mutation on the hematopoietic stem and progenitor compartment in human myeloproliferative neoplasms;Anand;Blood J. Am. Soc. Hematol.,2011

3. Global dynamics of healthy and cancer cells competing in the hematopoietic system;Andersen;Math. Biosci.,2020

4. A tutorial on adaptive mcmc;Andrieu;Stat. Comput.,2008

5. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia;Arber;Blood,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3