Beyond SIRD models: a novel dynamic model for epidemics, relating infected with entries to health care units and application for identification and restraining policy

Author:

Tsiliyannis Christos1

Affiliation:

1. ANION Environmental Ltd , 26 Lykoudi Str., Athens, Ano Patissia, 11141, Greece

Abstract

Abstract Epidemic models of susceptibles, exposed, infected, recovered and deceased (SΕIRD) presume homogeneity, constant rates and fixed, bilinear structure. They produce short-range, single-peak responses, hardly attained under restrictive measures. Tuned via uncertain I,R,D data, they cannot faithfully represent long-range evolution. A robust epidemic model is presented that relates infected with the entry rate to health care units (HCUs) via population averages. Model uncertainty is circumvented by not presuming any specific model structure, or constant rates. The model is tuned via data of low uncertainty, by direct monitoring: (a) of entries to HCUs (accurately known, in contrast to delayed and non-reliable I,R,D data) and (b) of scaled model parameters, representing population averages. The model encompasses random propagation of infections, delayed, randomly distributed entries to HCUs and varying exodus of non-hospitalized, as disease severity subdues. It closely follows multi-pattern growth of epidemics with possible recurrency, viral strains and mutations, varying environmental conditions, immunity levels, control measures and efficacy thereof, including vaccination. The results enable real-time identification of infected and infection rate. They allow design of resilient, cost-effective policy in real time, targeting directly the key variable to be controlled (entries to HCUs) below current HCU capacity. As demonstrated in ex post case studies, the policy can lead to lower overall cost of epidemics, by balancing the trade-off between the social cost of infected and the economic contraction associated with social distancing and mobility restriction measures.

Publisher

Oxford University Press (OUP)

Reference68 articles.

1. COVID-19: disease, management, treatment, and social impact;Ali;Sci. Total Environ.,2020

2. Covid-19: from model prediction to model predictive control;Alleman,2020

3. A primer on stochastic epidemic models: formulation, numerical simulation, and analysis;Allen;Infect. Dis. Model.,2017

4. Data-based analysis, modelling and forecasting of the COVID-19 outbreak;Anastassopoulou;PLoS ONE,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3