Diffusion of dermatological irritant in drying laundered cloth

Author:

Broadbridge P1,Tilley B S2

Affiliation:

1. Department of Mathematics and Statistics, La Trobe University, Bundoora, Victoria 3086, Australia

2. Center for Industrial Mathematics and Statistics, Department of Mathematical Sciences, Worcester Polytechnic Institute, 100 Institute Rd, Worcester, MA 01609, USA

Abstract

Abstract Sodium dodecyl sulphate (SDS), a commonly used laundry surfactant, has been known to cause some damage to epithelial cells in skin. Further, independent experiments have shown that a single laundry wash with rinsing leaves a residue of around 10% of the chemicals used in a wash cycle. A realistic nonlinear system of partial differential equations is developed for coupled water and solute transport through a drying porous medium when the solute has a mobile state (monomers) as well as an immobile state (micelles). An accurate finite difference scheme is developed and tested against known exact solutions of the nonlinear porous medium equation for transport of water and against known conservation laws. It shows that at the end of atmosphere-controlled stage 1 of drying when little water remains, the concentration of SDS near the drying surface, where it may contact skin, is commonly an order of magnitude higher than its initial value. The problem is exacerbated by successive regular wash cycles and by higher evaporation rates in electronic dryers. The numerical solutions show the partitioning between the two phases of SDS.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Pharmacology,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modelling and Simulation,General Medicine,General Neuroscience

Reference32 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3