A stochastic model for cancer metastasis: branching stochastic process with settlement

Author:

Frei Christoph1,Hillen Thomas1,Rhodes Adam1

Affiliation:

1. Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, Canada

Abstract

Abstract We introduce a new stochastic model for metastatic growth, which takes the form of a branching stochastic process with settlement. The moving particles are interpreted as clusters of cancer cells, while stationary particles correspond to micro-tumours and metastases. The analysis of expected particle location, their locational variance, the furthest particle distribution and the extinction probability leads to a common type of differential equation, namely, a non-local integro-differential equation with distributed delay. We prove global existence and uniqueness results for this type of equation. The solutions’ asymptotic behaviour for long time is characterized by an explicit index, a metastatic reproduction number $R_0$: metastases spread for $R_{0}>1$ and become extinct for $R_{0}<1$. Using metastatic data from mouse experiments, we show the suitability of our framework to model metastatic cancer.

Funder

Natural Sciences and Engineering Research Council of Canada

Alberta Innovates

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Pharmacology,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine,General Neuroscience

Reference40 articles.

1. A branching random walk with a barrier;Biggins;Ann. Appl. Probab.,1991

2. Temporal progression of metastasis in lung: cell survival, dormancy, and location dependence of metastatic inefficiency;Cameron;Cancer Res.,2000

3. Dissemination and growth of cancer cells in metastatic sites;Chambers;Nat. Rev. Cancer,2002

4. Platelets and p-selectin control tumor cell metastasis in an organ-specific manner and independently of NK cells;Coupland;Cancer Res.,2012

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3