Mathematical modelling of trastuzumab-induced immune response in an in vivo murine model of HER2+ breast cancer

Author:

Jarrett Angela M12,Bloom Meghan J3,Godfrey Wesley4,Syed Anum K3,Ekrut David A1,Ehrlich Lauren I452,Yankeelov Thomas E1362,Sorace Anna G3672

Affiliation:

1. Institute for Computational Engineering and Sciences, University of Texas, Austin, TX, USA

2. Livestrong Cancer Institutes, University of Texas, Austin, TX, USA

3. Department of Biomedical Engineering, University of Texas, Austin, TX, USA

4. Department of Molecular Biosciences, University of Texas, Austin, TX, USA

5. Institute for Cellular and Molecular Biology, University of Texas, Austin, TX, USA

6. Department of Diagnostic Medicine, University of Texas, Austin, TX, USA

7. Department of Oncology, University of Texas, Austin, TX, USA

Abstract

Abstract The goal of this study is to develop an integrated, mathematical–experimental approach for understanding the interactions between the immune system and the effects of trastuzumab on breast cancer that overexpresses the human epidermal growth factor receptor 2 (HER2+). A system of coupled, ordinary differential equations was constructed to describe the temporal changes in tumour growth, along with intratumoural changes in the immune response, vascularity, necrosis and hypoxia. The mathematical model is calibrated with serially acquired experimental data of tumour volume, vascularity, necrosis and hypoxia obtained from either imaging or histology from a murine model of HER2+ breast cancer. Sensitivity analysis shows that model components are sensitive for 12 of 13 parameters, but accounting for uncertainty in the parameter values, model simulations still agree with the experimental data. Given theinitial conditions, the mathematical model predicts an increase in the immune infiltrates over time in the treated animals. Immunofluorescent staining results are presented that validate this prediction by showing an increased co-staining of CD11c and F4/80 (proteins expressed by dendritic cells and/or macrophages) in the total tissue for the treated tumours compared to the controls ($p < 0.03$). We posit that the proposed mathematical–experimental approach can be used to elucidate driving interactions between the trastuzumab-induced responses in the tumour and the immune system that drive the stabilization of vasculature while simultaneously decreasing tumour growth—conclusions revealed by the mathematical model that were not deducible from the experimental data alone.

Funder

National Cancer Institute

Cancer Prevention and Research Institute of Texas

American Cancer Society

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Pharmacology,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modelling and Simulation,General Medicine,General Neuroscience

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3