Local projection inference in high dimensions

Author:

Adamek Robert1,Smeekes Stephan2,Wilms Ines2

Affiliation:

1. Department of Economics and Business Economics, Aarhus University , Fuglesangs Allé 4, 8210 Aarhus V , Denmark

2. Department of Quantitative Economics, Maastricht University , Tongersestraat 53, 6211LM , The Netherlands

Abstract

Summary In this paper, we estimate impulse responses by local projections in high-dimensional settings. We use the desparsified (de-biased) lasso to estimate the high-dimensional local projections, while leaving the impulse response parameter of interest unpenalized. We establish the uniform asymptotic normality of the proposed estimator under general conditions. Finally, we demonstrate small sample performance through a simulation study and consider two canonical applications in macroeconomic research on monetary policy and government spending.

Funder

NWO

Publisher

Oxford University Press (OUP)

Reference45 articles.

1. Lasso inference for high-dimensional time series;Adamek;Journal of Econometrics,2023

2. Heteroskedasticity and autocorrelation consistent covariance matrix estimation;Andrews;Econometrica,1991

3. Semiparametric estimates of monetary policy effects: string theory revisited;Angrist;Journal of Business & Economic Statistics,2018

4. Large Bayesian vector auto regressions;Bańbura;Journal of Applied Econometrics,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3