Designed quadrature to approximate integrals in maximum simulated likelihood estimation

Author:

Bansal Prateek1,Keshavarzzadeh Vahid2,Guevara Angelo3,Li Shanjun4,Daziano Ricardo A5

Affiliation:

1. Department of Civil and Environmental Engineering, Imperial College London, Exhibition Rd, South Kensington, London SW7 2BX, UK

2. Scientific Computing and Imaging Institute, University of Utah, 72 Central Campus Dr, Salt Lake City, UT 84112, USA

3. Departamento de Ingeniería Civil, Universidad de Chile, Chile, Instituto Sistemas Complejos de Ingeniería, Av. República 701, Santiago, Región Metropolitana, Chile

4. Dyson School of Applied Economics and Management, Cornell University, 137 Reservoir Ave, Ithaca, NY 14853, USA

5. School of Civil and Environmental Engineering, Cornell University, 313 Campus Rd, Ithaca, NY 14853, USA

Abstract

Summary Maximum simulated likelihood estimation of mixed multinomial logit models requires evaluation of a multidimensional integral. Quasi-Monte Carlo (QMC) methods such as Halton sequences and modified Latin hypercube sampling are workhorse methods for integral approximation. Earlier studies explored the potential of sparse grid quadrature (SGQ), but SGQ suffers from negative weights. As an alternative to QMC and SGQ, we looked into the recently developed designed quadrature (DQ) method. DQ requires fewer nodes to get the same level of accuracy as QMC and SGQ, is as easy to implement, ensures positivity of weights, and can be created on any general polynomial space. We benchmarked DQ against QMC in a Monte Carlo and an empirical study. DQ outperformed QMC in all considered scenarios, is practice ready, and has potential to become the workhorse method for integral approximation.

Funder

National Science Foundation

Agencia Nacional de Investigación y Desarrollo

FONDECYT

PIA

BASAL

Publisher

Oxford University Press (OUP)

Subject

Economics and Econometrics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3