Feasible IV regression without excluded instruments

Author:

Tsyawo Emmanuel Selorm1

Affiliation:

1. AIRESS & FGSES, Université Mohammed VI Polytechnique, Technopolis-Rabat , Morocco

Abstract

Summary The relevance condition of integrated conditional moment (ICM) estimators is significantly weaker than the conventional instrumental variable's in at least two respects: (1) consistent estimation without excluded instruments is possible, provided endogenous covariates are nonlinearly mean-dependent on exogenous covariates, and (2) endogenous covariates may be uncorrelated with but mean-dependent on instruments. These remarkable properties notwithstanding, multiplicative-kernel ICM estimators suffer diminished identification strength, large bias, and severe size distortions even for a moderately sized instrument vector. This paper proposes a computationally fast linear ICM estimator that better preserves identification strength in the presence of multiple instruments and a test of the ICM relevance condition. Monte Carlo simulations demonstrate a considerably better size control in the presence of multiple instruments and a favourably competitive performance in general. An empirical example illustrates the practical usefulness of the estimator, where estimates remain plausible when no excluded instrument is used.

Publisher

Oxford University Press (OUP)

Subject

Economics and Econometrics

Reference36 articles.

1. Weak instruments in instrumental variables regression: Theory and practice;Andrews;Annual Review of Economics,2019

2. Jackknife instrumental variables estimation;Angrist;Journal of Applied Econometrics,1999

3. Conditional moment models under semi-strong identification;Antoine;Journal of Econometrics,2014

4. Partially linear models with endogeneity: A conditional moment-based approach;Antoine;Econometrics Journal,2022

5. Consistent model specification tests;Bierens;Journal of Econometrics,1982

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3