Frequency filter for elastic bending waves: Poincaré map method and experiment

Author:

Torres-Guzmán J C1ORCID,Arreola-Lucas A2ORCID,Quintana-Moreno M3ORCID,Zamora-Romero N3ORCID,Flores-Olmedo E3ORCID,Báez G3ORCID,Méndez-Sánchez R A4ORCID

Affiliation:

1. Universidad Politécnica del Estado de Morelos, Jiutepec, Morelos, México

2. Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, Iztapalapa, Ciudad de México, México

3. Área de Física Teórica y Materia Condensada, Universidad Autónoma Metropolitana-Azcapotzalco, Ciudad de México, México

4. Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México

Abstract

Abstract In this work, the Poincaré map numerical method was successfully developed to solve the fourth-order differential equation that describes the flexural vibrations of a beam, within the Timoshenko beam theory. The Euler-Bernoulli continuity conditions were considered, which are valid for frequencies smaller than the critical frequency. As an example, this method was used to design a complex elastic structure, characterized by a flexural frequency spectrum with a broad band gap. Such structure consists of two coupled phononic crystals, which were designed with filling factor values in such a way that in their bending frequency spectra, an allowed band of the first part, overlaps with a band gap of the second one and vice versa. The resulting composed system has a much wider effective gap than its original components, between 4 and 10.5 kHz. This system works as an elastic bending wave filter. Finally, these three structured elastic systems were constructed, and characterized by the acoustic resonance spectroscopy technique. The natural flexural frequencies as well as the corresponding wave amplitudes of each structured beam were measured. The experimental measurements show excellent agreement with the numerical simulation.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Mechanical Engineering,Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3