$\vee$ -Systems, Holonomy Lie Algebras, and Logarithmic Vector Fields

Author:

Feigin Misha V1,Veselov Alexander P23

Affiliation:

1. School of Mathematics and Statistics, University of Glasgow, Glasgow, UK

2. Department of Mathematical Sciences, Loughborough University, UK

3. Moscow State University, Moscow, Russia

Abstract

Abstract It is shown that the description of certain class of representations of the holonomy Lie algebra $\mathfrak g_{\Delta}$ associated with hyperplane arrangement $\Delta$ is essentially equivalent to the classification of $\vee$-systems associated with $\Delta.$ The flat sections of the corresponding $\vee$-connection can be interpreted as vector fields, which are both logarithmic and gradient. We conjecture that the hyperplane arrangement of any $\vee$-system is free in Saito's sense and show this for all known $\vee$-systems and for a special class of $\vee$-systems called harmonic, which includes all Coxeter systems. In the irreducible Coxeter case the potentials of the corresponding gradient vector fields turn out to be Saito flat coordinates, or their one-parameter deformations. We give formulas for these deformations as well as for the potentials of the classical families of harmonic $\vee$-systems.

Funder

Engineering and Physical Sciences Research Council

Royal Society

Russian Foundation for Basic Research

Publisher

Oxford University Press (OUP)

Subject

General Mathematics

Reference54 articles.

1. “The freeness of ideal subarrangements of Weyl arrangements.”;Abe,;Journal of the European Mathematical Society,(2016)

2. “On the structure of integrals of power product of linear functions.”;Aomoto,;Scientific papers of the College of General Education, University of Tokyo,(1977)

3. “The cohomology ring of pure braid group.”;Arnold,;Mathematical Notes,(1969)

4. “Purely non-local Hamiltonian formalism, Kohno connections and $\vee$-systems.”;Arsie,;Journal of Mathematical Physics,(2014)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Dubrovin-Frobenius manifold structure of NLS type on the orbit space of $$B_n$$;Selecta Mathematica;2022-10-19

2. Frobenius algebras and root systems: the trigonometric case;Letters in Mathematical Physics;2021-09-29

3. Linear Pfaffian Systems and Classical Solutions of Triangular Schlesinger Equations;Proceedings of the Steklov Institute of Mathematics;2020-01

4. Supersymmetric V-systems;Journal of High Energy Physics;2019-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3