Predicted range expansion of Prostephanus truncatus (Coleoptera: Bostrichidae) under projected climate change scenarios

Author:

Harman Rachel R1ORCID,Morrison William R1ORCID,Ludwick Dalton23ORCID,Gerken Alison R1ORCID

Affiliation:

1. USDA, Agricultural Research Service, Center for Grain and Animal Health Research , 1515 College Ave, Manhattan, KS 66502 , USA

2. Department of Entomology, Texas A&M AgriLife , 10345 Highway 44, Corpus Christi, TX, 78406 , USA

3. Plant Genetics Research Unit, USDA, Agricultural Research Service, 205 Curtis Hall, University of Missouri , Columbia, MO 65211 , USA

Abstract

Abstract The larger grain borer (Prostephanus truncatus [Horn] [Coleoptera: Bostrichidae]) is a wood-boring insect native to Central America and adapted to stored maize and cassava. It was accidentally introduced to Tanzania and became a pest across central Africa. Unlike many grain pests, P. truncatus populations can establish and move within forests. Consequently, novel infestations can occur without human influence. The objectives of our study were to (i) develop an updated current suitability projection for P. truncatus, (ii) assess its potential future distribution under different climate change scenarios, and (iii) identify climate variables that best inform the model. We used WALLACE and MaxEnt to predict potential global distribution by incorporating bioclimatic variables and occurrence records. Future models were projected for 2050 and 2070 with Representative Concentration Pathways (RCPs) 2.6 (low change) and 8.5 (high change). Distribution was most limited by high precipitation and cold temperatures. Globally, highly suitable areas (> 75%) primarily occurred along coastal and equatorial regions with novel areas in northern South America, India, southeastern Asia, Indonesia, and the Philippines, totaling 7% under current conditions. Highly suitable areas at RCPs 2.6 and 8.5 are estimated to increase to 12% and 15%, respectively, by 2050 and increase to 19% in 2070 under RCP 8.5. Centroids of highly suitable areas show distribution centers moving more inshore and away from the equator. Notably, the result is a range expansion, not a shift. Results can be used to decrease biosecurity risks through more spatially explicit and timely surveillance programs for targeting the exclusion of this pest.

Funder

NIFA

USDA

Crop Protection and Pest Management

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3