Effects of maize development and phenology on the field infestation dynamics of the European corn borer (Lepidoptera: Crambidae)

Author:

Revillon Sacha1ORCID,Dillmann Christine1,Galic Nathalie1,Bauland Cyril1ORCID,Palaffre Carine2ORCID,Malvar Rosa Ana3,Butron Ana3ORCID,Rebaudo François4ORCID,Legrand Judith1

Affiliation:

1. UMR GQE-Le Moulon, INRAE, Université Paris Saclay , Gif sur Yvette , France

2. Unité Expérimentale Maïs, INRAE , Saint Martin de Hinx , France

3. Misión Biológica de Galicia - CSIC , Pontevedra , Spain

4. UMR EGCE, IRD, CNRS, Université Paris Saclay , Gif sur Yvette , France

Abstract

Abstract Phenological match/mismatch between cultivated plants and their pest could impact pest infestation dynamics in the field. To explore how such match/mismatch of plant and pest phenologies may interact with plant defense dynamics, we studied the infestation dynamics of maize by one of its main pests in Europe, the European Corn Borer (Ostrinia nubilalis; Lepidoptera: Crambidae). A two-year field experiment was carried out on a collection of 23 maize inbred lines contrasted for their earliness. Each inbred line was sown at three different dates in order to expose different developmental stages of maize to natural European corn borer infestation. The effect of the sowing date depended on the inbred line, the pest generation, and the year. In 2021, the final pest incidence ranged from 36% to 91% depending on inbred lines and sowing date. In 2022, it ranged from 2% to 77%. This variability in final pest incidence can be related to variations in plant development during plant exposure to pest infestation. However, this relationship was not straightforward. Indeed, the shape and intensity of the relationship depended on the timing of the onset of the pest infestation. When infestation occurred while plants were in a vegetative stage, a nonlinear relationship between development and pest incidence was observed with the least and most developed plants being the most infested. When infestation occurred when all plants were in the mature phase, the most developed plants were the least infested. Our results highlight the effect of plant–pest phenological match/mismatch on pest infestation dynamics and underline the importance of taking plant–pest interactions into account to propose relevant control strategies.

Publisher

Oxford University Press (OUP)

Reference58 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3