Development of bait station to complement attract-and-kill agents of Zeugodacus tau (Diptera: Tephritidae)

Author:

Lin Jia123ORCID,Yue Guoqing123,Xiao Kang123,Chen Jun123,Hao Xuxing123,Yang Deqing123,Yang Jianquan123,Zheng Minlin123,Ji Qinge123

Affiliation:

1. Institute of Biological Control, Fujian Agriculture and Forestry University , Fuzhou , China

2. Key Laboratory of Biopesticide and Chemical Biology, Ministry of Education , Fuzhou , China

3. State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops , Fuzhou , China

Abstract

Abstract Zeugodacus tau (Walker) (Diptera: Tephritidae) is an important agricultural pest currently managed primarily through the application of insecticides due to limited control strategies. Bait station devices are target specific and have emerged as a behaviorally based alternative to traditional insecticide sprays for managing Z. tau. In this study, we designed a bait station by integrating female-biased olfactory, visual, and gustatory elements, and a killing agent in a wax-matrix. Our results showed that the wax-matrix integrated with spinetoram showed the highest toxicity to immature and mature Z. tau females. Furthermore, the color and shape of the spinetoram bait station significantly influenced its attractiveness and toxicity to female Z. tau. Green sausage-shaped exteriors were the most effective color and shape examined. Subsequent experiments showed a length-dependent effect on mortality and visiting frequencies of Z. tau females when the bait stations were 9–13 cm long. The addition of the olfactory stimulus of 5% ammonium acetate to the bait station attracted a higher number of mature Z. tau females than the control. The killing efficacy of the weathered bait station was similar to that of the fresh station within an 8-week period (over 794 mm of rainfall). The bait station developed herein would provide new insight into the attract-and-kill strategy for Z. tau and alleviate the pressure of the actual management program for this pest.

Funder

National Key Research and Development Program of China

International Atomic Energy Agency

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3