Detection of bean damage caused by Epilachna varivestis (Coleoptera: Coccinellidae) using drones, sensors, and image analysis

Author:

Karimzadeh Roghaiyeh12,Naharki Kushal1ORCID,Park Yong-Lak1ORCID

Affiliation:

1. Division of Plant and Soil Sciences, West Virginia University , Morgantown, WV , USA

2. Department of Plant Protection, Faculty of Agriculture, University of Tabriz , Tabriz , Iran

Abstract

Abstract The Mexican bean beetle, Epilachna varivestis Mulsant (Coleoptera: Coccinellidae), is a key pest of beans, and early detection of bean damage is crucial for the timely management of E. varivestis. This study was conducted to assess the feasibility of using drones and optical sensors to quantify the damage to field beans caused by E. varivestis. A total of 14 bean plots with various levels of defoliation were surveyed aerially with drones equipped with red-blue-green (RGB), multispectral, and thermal sensors at 2 to 20 m above the canopy of bean plots. Ground-validation sampling included harvesting entire bean plots and photographing individual leaves. Image analyses were used to quantify the amount of defoliation by E. varivestis feeding on both aerial images and ground-validation photos. Linear regression analysis was used to determine the relationship of bean defoliation by E. varivestis measured on aerial images with that found by the ground validation. The results of this study showed a significant positive relationship between bean damages assessed by ground validation and those by using RGB images and a significant negative relationship between the actual amount of bean defoliation and Normalized Difference Vegetation Index values. Thermal signatures associated with bean defoliation were not detected. Spatial analyses using geostatistics revealed the spatial dependency of bean defoliation by E. varivestis. These results suggest the potential use of RGB and multispectral sensors at flight altitudes of 2 to 6 m above the canopy for early detection and site-specific management of E. varivestis, thereby enhancing management efficiency.

Funder

USDA

NIFA

Foundational and Applied Science Program

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3