Affiliation:
1. Department of Entomology and Plant Pathology, NC State University , 207 Research Station Road, Plymouth, NC 27962 , USA
2. Department of Crop and Soil Sciences, NC State University , Nelson Hall, 3709 Hillsboro Street, Raleigh, NC 27607 , USA
Abstract
Abstract
Corn, Zea mays L. (Poales: Poaceae), growers in the US Cotton Belt are required to plant 20% of total corn acres to non-Bt hybrids for resistance management (non-Bt refuge). Most growers do not meet this requirement, in part, because they perceive non-Bt hybrids to yield less than Bt hybrids. We planted multiple non-Bt and Bt hybrids from a single company in small-plot replicated trials at a single location from 2019 to 2023, as well as in small-plot replicated trials at multiple locations during 2022 and 2023. In the single location, we measured kernel injury from corn earworm, Helicoverpa zea Boddie (Lepidoptera: Noctuidae), and we recorded yield at all locations. In the single location trial, yields only separated among hybrids in 3 out of 5 years. In the multiple location trial, yields were variable between both years. We found that Bt hybrids tended to yield higher than non-Bt hybrids overall, but this was influenced by the inclusion of non-Bt hybrids that had a lower overall genetic yield potential in the environments we tested them in. In both tests, when hybrids were analyzed during each year, both Bt and non-Bt hybrids were among the statistically highest yielders. Our study demonstrates the importance of comparing multiple Bt and non-Bt hybrids to draw yield comparisons. This highlights the need for corn seed company breeders to put effort into improving yield for non-Bt hybrids. Hopefully this effort will translate into increased planting of non-Bt refuge corn for growers in the US Cotton Belt.
Publisher
Oxford University Press (OUP)