Sulfopeptide CLEL6 inhibits anthocyanin biosynthesis in Arabidopsis thaliana

Author:

Bühler Eric1ORCID,Fahrbach Elisa1ORCID,Schaller Andreas1ORCID,Stührwohldt NilsORCID

Affiliation:

1. Department of Plant Physiology and Biochemistry, Institute of Biology, University of Hohenheim , Stuttgart 70593 , Germany

Abstract

Abstract Posttranslationally modified peptides are now recognized as important regulators of plant stress responses. Here, we identified the small sulfated CLE-LIKE6 (CLEL6) peptide as a negative regulator of anthocyanin biosynthesis in etiolated and in light-stressed Arabidopsis (Arabidopsis thaliana) seedlings. CLEL6 function depends on proteolytic processing of the CLEL6 precursor by subtilisin-like serine proteinase 6.1 (SBT6.1) and on tyrosine sulfation by tyrosylprotein sulfotransferase (TPST). Loss-of-function mutants of either sbt6.1 or tpst showed significantly higher anthocyanin accumulation than the wild type upon light stress. The anthocyanin overaccumulation phenotype of sbt6.1 and tpst was suppressed by application of mature CLEL6. Overexpression and external application of CLEL6 inhibited the expression of anthocyanin biosynthesis genes in etiolated and light-stressed seedlings, confirming the role of CLEL6 as an inhibitor of anthocyanin biosynthesis. Small posttranslationally modified peptides are perceived by leucine-rich repeat receptor-like kinases. Using a quintuple mutant of ROOT MERISTEM GROWTH FACTOR 1 INSENSITIVE (RGI) receptors, we showed the essential function of the RGI receptor family in CLEL6 signaling. Our data indicate that overexpression or application of CLEL6 inhibits anthocyanin biosynthesis through RGI receptors. We propose that CLEL6 inhibits anthocyanin biosynthesis in etiolated seedlings, and that anthocyanin biosynthesis is derepressed when CLEL6 expression is downregulated upon light exposure. Hyperaccumulation of anthocyanins in light-stressed tpst and sbt6.1 mutant seedlings suggests that CLEL6, or related sulfopeptides, continues to act as negative regulators to limit pigment accumulation in the light.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3