T-LOC: A comprehensive tool to localize and characterize T-DNA integration sites

Author:

Li Shaofang1ORCID,Wang Chenyang12ORCID,You Chenjiang3ORCID,Zhou Xueping14ORCID,Zhou Huanbin1

Affiliation:

1. State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences , Beijing 100193, China

2. College of Biological Sciences, China Agricultural University , Beijing 100193, China

3. State Key Laboratory of Genetic Engineering and Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, School of Life Sciences, Institute of Plant Biology, Fudan University , Shanghai 200438, China

4. State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University , Hangzhou 310058, China

Abstract

Abstract Scientists have developed many approaches based on PCR or next-generation sequencing to localize and characterize integrated T-DNAs in transgenic plants generated by Agrobacterium tumefaciens-mediated T-DNA transfer. However, none of these methods has the robust ability to handle all transgenic plants with diversified T-DNA patterns. Utilizing the valuable information in the whole-genome sequencing data of transgenic plants, we have developed a comprehensive approach (T-LOC) to localize and characterize T-DNA integration sites (TISs). We evaluated the performance of T-LOC on genome sequencing data from 48 transgenic rice (Oryza sativa) plants that provide real and unbiased resources of T-DNA integration patterns. T-LOC discovered 75 full TISs and reported a diversified pattern of T-DNA integration: the ideal single-copy T-DNA between two borders, multiple-copy of T-DNAs in tandem or inverted repeats, truncated partial T-DNAs with or without the selection hygromycin gene, the inclusion of T-DNA backbone, the integration at the genome repeat region, and the concatenation of multiple ideal or partial T-DNAs. In addition, we reported that DNA fragments from the two A. tumefaciens plasmids can be fused with T-DNA and integrated into the plant genome. Besides, T-LOC characterizes the genomic changes at TISs, including deletion, duplication, accurate repair, and chromosomal rearrangement. Moreover, we validated the robustness of T-LOC using PCR, Sanger sequencing, and Nanopore sequencing. In summary, T-LOC is a robust approach to studying the TISs independent of the integration pattern and can recover all types of TISs in transgenic plants.

Funder

Central Public-interest Scientific Institution Basal Research Fund

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3