Lipid transport protein ORP2A promotes glucose signaling by facilitating RGS1 degradation

Author:

Yu Qian1ORCID,Zou Wenjiao23ORCID,Liu Kui24ORCID,Sun Jialu1ORCID,Chao Yanru2ORCID,Sun Mengyao1ORCID,Zhang Qianqian25ORCID,Wang Xiaodong2ORCID,Wang Xiaofei2ORCID,Ge Lei12ORCID

Affiliation:

1. The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University , Qingdao 266109 , China

2. State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University , Tai’an 271018 , China

3. Institute of Pharmacy, Shandong University of Traditional Chinese Medicine , Jinan 250355 , China

4. Shandong Provincial Key Laboratory of Biophysics, Dezhou University , Dezhou 253023 , China

5. Shandong Academy of Grape, Shandong Academy of Agricultural Sciences , Jinan 250100 , China

Abstract

Abstract Heterotrimeric GTP-binding proteins (G proteins) are a group of regulators essential for signal transmission into cells. Regulator of G protein signaling 1 (AtRGS1) possesses intrinsic GTPase-accelerating protein (GAP) activity and could suppress G protein and glucose signal transduction in Arabidopsis (Arabidopsis thaliana). However, how AtRGS1 activity is regulated is poorly understood. Here, we identified a knockout mutant of oxysterol binding protein-related protein 2A, orp2a-1, which exhibits similar phenotypes to the arabidopsis g-protein beta 1-2 (agb1-2) mutant. Transgenic lines overexpressing ORP2A displayed short hypocotyls, a hypersensitive response to sugar, and lower intracellular AtRGS1 levels than the control. Consistently, ORP2A interacted with AtRGS1 in vitro and in vivo. Tissue-specific expression of 2 ORP2A alternative splicing isoforms implied functions in controlling organ size and shape. Bioinformatic data and phenotypes of orp2a-1, agb1-2, and the orp2a-1 agb1-2 double mutant revealed the genetic interactions between ORP2A and Gβ in the regulation of G protein signaling and sugar response. Both alternative protein isoforms of ORP2A localized in the endoplasmic reticulum (ER), plasma membrane (PM), and ER–PM contact sites and interacted with vesicle-associated membrane protein-associated protein 27-1 (VAP27-1) in vivo and in vitro through their two phenylalanines in an acidic track-like motif. ORP2A also displayed differential phosphatidyl phosphoinositide binding activity mediated by the pleckstrin homology domain in vitro. Taken together, the Arabidopsis membrane protein ORP2A interacts with AtRGS1 and VAP27-1 to positively regulate G protein and sugar signaling by facilitating AtRGS1 degradation.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3