Replication protein A large subunit (RPA1a) limits chiasma formation during rice meiosis

Author:

Miao Yongjie12,Shi Wenqing1ORCID,Wang Hongjun1,Xue Zhihui1,You Hanli12,Zhang Fanfan1ORCID,Du Guijie1ORCID,Tang Ding1ORCID,Li Yafei1ORCID,Shen Yi1ORCID,Cheng Zhukuan123ORCID

Affiliation:

1. State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China

Abstract

Abstract Replication protein A (RPA), a single-stranded DNA-binding protein, plays essential role in homologous recombination. However, because deletion of RPA causes embryonic lethality in mammals, the exact function of RPA in meiosis remains unclear. In this study, we generated an rpa1a mutant using CRISPR/Cas9 technology and explored its function in rice (Oryza sativa) meiosis. In rpa1a, 12 bivalents were formed at metaphase I, just like in wild-type, but chromosome fragmentations were consistently observed at anaphase I. Fluorescence in situ hybridization assays indicated that these fragmentations were due to the failure of the recombination intermediates to resolve. Importantly, the mutant had a highly elevated chiasma number, and loss of RPA1a could completely restore the 12 bivalent formations in the zmm (for ZIP1-4, MSH4/5, and MER3) mutant background. Protein–protein interaction assays showed that RPA1a formed a complex with the methyl methansulfonate and UV sensitive 81 (and the Fanconi anemia complementation group M–Bloom syndrome protein homologs (RECQ4A)–Topoisomerase3α–RecQ-mediated genome instability 1 complex to regulate chiasma formation and processing of the recombination intermediates. Thus, our data establish a pivotal role for RPA1a in promoting the accurate resolution of recombination intermediates and in limiting redundant chiasma formation during rice meiosis.

Funder

Beijing Municipal Natural Science Foundation

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3