Persulfidation of transcription factor MYB10 inhibits anthocyanin synthesis in red-skinned pear

Author:

Yao Gaifang1ORCID,Gou Shasha1ORCID,Zhong Tingying1,Wei Shuwei2,An Xin1,Sun Hongye1ORCID,Sun Chen1,Hu Kangdi1ORCID,Zhang Hua1ORCID

Affiliation:

1. School of Food and Biological Engineering, Hefei University of Technology , Hefei 230009 , China

2. Shandong Institute of Pomology , Tai’an 271000 , China

Abstract

Abstract Hydrogen sulfide (H2S) is a gaseous signaling molecule that delays color change during fruit ripening. Whether H2S affects anthocyanin biosynthesis in red-skinned pears (Pyrus L.) remains unclear. Here, we found that H2S substantially inhibits anthocyanin accumulation in red-skinned pears and the expression of several genes encoding transcription factors is affected in response to H2S signaling. For example, PyMYB10 and PyMYB73 were down-regulated, whereas PyMYB114 and PyMYB6 were up-regulated. Bioinformatics analysis showed that PyMYB73 and PyMYB6, each containing an EAR motif, may negatively regulate anthocyanin accumulation. Transient expression analysis showed that PyMYB73 substantially promotes anthocyanin biosynthesis by co-transforming with PyMYB10/PyMYB114 + PybHLH3; however, PyMYB6 inhibited anthocyanin biosynthesis in strawberry (Fragaria vesca) receptacles and pear fruits, and PyMYB73 interacted with PyMYB10 and PyMYB6 but not PyMYB114 or PybHLH3. Further investigation showed that Cys194 and Cys218 of PyMYB10 were modified by persulfidation and that PyMYB10Cys218Ala substantially increased anthocyanin accumulation by a transient transformation system. Co-transformation of PyMYB10Cys218Ala + PyMYB73/PyMYB6 also promoted anthocyanin accumulation in pear fruits. Yeast two-hybrid assays showed that the mutation of PyMYB10 did not affect the interaction between PyMYB10 and PyMYB73, but it inhibited interaction with PyMYB6. Moreover, H2S weakened the interaction between PyMYB10 and PyMYB73 but enhanced the interaction with PyMYB6. Thus, we provided a model in which PyMYB10 undergoes persulfidation at Cys218, enhancing the interaction with PyMYB6 and reducing the interaction with PyMYB73. These subsequently results in lower expression of the anthocyanin biosynthesis-related genes Pyrus dihydroflavonol 4-reductase (PyDFR), Pyrus anthocyanidin synthase (PyANS), Pyrus UDP-glucose: flavonoid 3-glucosyl transferase (PyUFGT) and Pyrus glutathione S-transferase (PyGST), thereby inhibiting anthocyanin accumulation in red-skinned pears. Our findings provided a molecular mechanism for H2S-mediated anthocyanin biosynthesis in red-skinned pears.

Funder

National Natural Science Foundation of China

Anhui Provincial Key Research and Development Plan

Fundamental Research Funds for the Central Universities

Natural Science Foundations of Shandong Province

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3