Stripe rust effector Pst21674 compromises wheat resistance by targeting transcription factor TaASR3

Author:

Zheng Peijing1ORCID,Liu Mengxue1ORCID,Pang Lijing1ORCID,Sun Ruyi1ORCID,Yao Mohan2ORCID,Wang Xiaojie2ORCID,Kang Zhensheng2ORCID,Liu Jie1ORCID

Affiliation:

1. State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University , Yangling 712100, Shaanxi , China

2. State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University , Yangling 712100, Shaanxi , China

Abstract

Abstract Pathogens compromise host defense responses by strategically secreting effector proteins. However, the molecular mechanisms by which effectors manipulate disease-resistance factors to evade host surveillance remain poorly understood. In this study, we characterized a Puccinia striiformis f. sp. tritici (Pst) effector Pst21674 with a signal peptide. Pst21674 was significantly upregulated during Pst infections in wheat (Triticum aestivum L.) and knocking down Pst21674 by host-induced gene silencing led to reduced Pst pathogenicity and restricted hyphal spread in wheat. Pst21674 interaction with the abscisic acid-, stress-, and ripening-induced protein TaASR3 was validated mainly in the nucleus. Size exclusion chromatography, bimolecular fluorescence complementation, and luciferase complementation imaging assays confirmed that TaASR3 could form a functional tetramer. Virus-induced gene silencing and overexpression demonstrated that TaASR3 contributes to wheat resistance to stripe rust by promoting accumulation of reactive oxygen species and cell death. Additionally, transcriptome analysis revealed that the expression of defense-related genes was regulated in transgenic wheat plants overexpressing TaASR3. Interaction between Pst21674 and TaASR3 interfered with the polymerization of TaASR3 and suppressed TaASR3-mediated transcriptional activation of defense-related genes. These results indicate that Pst21674 serves as an important virulence factor secreted into the host nucleus to impede wheat resistance to Pst, possibly by targeting and preventing polymerization of TaASR3.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Natural Science Basic Research Plan in Shaanxi Province of China

National “111 plan”

Chinese Universities Scientific Fund

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3