Can we harness digital technologies and physiology to hasten genetic gain in US maize breeding?

Author:

Diepenbrock Christine H1ORCID,Tang Tom2,Jines Michael3,Technow Frank4ORCID,Lira Sara2,Podlich Dean2,Cooper Mark5ORCID,Messina Carlos2ORCID

Affiliation:

1. Department of Plant Sciences, University of California, Davis, California 95616, USA

2. Research & Development, Corteva Agriscience, Johnston, Iowa 50131, USA

3. Research & Development, Corteva Agriscience, Windfall, Indiana 46076, USA

4. Research & Development, Corteva Agriscience, Tavistock, ON N4S 7W1, Canada

5. Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Queensland 4072, Australia

Abstract

Abstract Plant physiology can offer invaluable insights to accelerate genetic gain. However, translating physiological understanding into breeding decisions has been an ongoing and complex endeavor. Here we demonstrate an approach to leverage physiology and genomics to hasten crop improvement. A half-diallel maize (Zea mays) experiment resulting from crossing 9 elite inbreds was conducted at 17 locations in the USA corn belt and 6 locations at managed stress environments between 2017 and 2019 covering a range of water environments from 377 to 760 mm of evapotranspiration and family mean yields from 542 to 1,874 g m−2. Results from analyses of 35 families and 2,367 hybrids using crop growth models linked to whole-genome prediction (CGM–WGP) demonstrated that CGM–WGP offered a predictive accuracy advantage compared to BayesA for untested genotypes evaluated in untested environments (r = 0.43 versus r = 0.27). In contrast to WGP, CGMs can deal effectively with time-dependent interactions between a physiological process and the environment. To facilitate the selection/identification of traits for modeling yield, an algorithmic approach was introduced. The method was able to identify 4 out of 12 candidate traits known to explain yield variation in maize. The estimation of allelic and physiological values for each genotype using the CGM created in silico phenotypes (e.g. root elongation) and physiological hypotheses that could be tested within the breeding program in an iterative manner. Overall, the approach and results suggest a promising future to fully harness digital technologies, gap analysis, and physiological knowledge to hasten genetic gain by improving predictive skill and definition of breeding goals.

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3