GLUTAMYL-tRNA SYNTHETASE 1 deficiency confers thermosensitive male sterility in rice by affecting reactive oxygen species homeostasis

Author:

Liu Huixin123ORCID,You Hanli1ORCID,Liu Changzhen2ORCID,Zhao Yangzi23,Chen Jiawei23ORCID,Chen Zhuoran23,Li Yafei2ORCID,Tang Ding2ORCID,Shen Yi2ORCID,Cheng Zhukuan1ORCID

Affiliation:

1. Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University , Yangzhou 225009 , China

2. State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences , Beijing 100101 , China

3. College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences , Beijing 100049 , China

Abstract

Abstract Temperature is one of the key environmental factors influencing crop fertility and yield. Understanding how plants sense and respond to temperature changes is, therefore, crucial for improving agricultural production. In this study, we characterized a temperature-sensitive male sterile mutant in rice (Oryza sativa), glutamyl-tRNA synthetase 1-2 (ers1-2), that shows reduced fertility at high temperatures and restored fertility at low temperatures. Mutation of ERS1 resulted in severely delayed pollen development and meiotic progression at high temperatures, eventually leading to male sterility. Moreover, meiosis-specific events, including synapsis and crossover formation, were also delayed in ers1-2 compared with the wild type. However, these defects were all mitigated by growing ers1-2 at low temperatures. Transcriptome analysis and measurement of ascorbate, glutathione, and hydrogen peroxide (H2O2) contents revealed that the delayed meiotic progression and male sterility in ers1-2 were strongly associated with changes in reactive oxygen species (ROS) homeostasis. At high temperatures, ers1-2 exhibited decreased accumulation of ROS scavengers and overaccumulation of ROS. In contrast, at low temperatures, the antioxidant system of ROS was more active, and ROS contents were lower. These data suggest that ROS homeostasis in ers1-2 is disrupted at high temperatures but restored at low temperatures. We speculate that ERS1 dysfunction leads to changes in ROS homeostasis under different conditions, resulting in delayed or rescued meiotic progression and thermosensitive male fertility. ers1-2 may hold great potential as a thermosensitive material for crop heterosis breeding.

Funder

Strategic Priority Research Program of Chinese Academy of Sciences

National Key Research and Development Program of China

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3