Mechanistic insight into the role of AUXIN RESISTANCE4 in trafficking of AUXIN1 and LIKE AUX1-2

Author:

Tidy Alison1ORCID,Abu Bakar Norliza1ORCID,Carrier David2ORCID,Kerr Ian D2ORCID,Hodgman Charlie13ORCID,Bennett Malcolm J13ORCID,Swarup Ranjan13ORCID

Affiliation:

1. Division of Plant and Crop Science, School of Biosciences, University of Nottingham , Nottingham LE12 5RD , UK

2. School of Life Sciences, University of Nottingham, Queen's Medical Centre , Nottingham NG7 2UH, UK

3. Centre for Plant Integrative Biology, University of Nottingham , Nottingham LE12 5RD , UK

Abstract

Abstract AUXIN RESISTANCE4 (AXR4) regulates the trafficking of auxin influx carrier AUXIN1 (AUX1), a plasma-membrane protein that predominantly localizes to the endoplasmic reticulum (ER) in the absence of AXR4. In Arabidopsis (Arabidopsis thaliana), AUX1 is a member of a small multigene family comprising 4 highly conserved genes—AUX1, LIKE-AUX1 (LAX1), LAX2, and LAX3. We report here that LAX2 also requires AXR4 for correct localization to the plasma membrane. AXR4 is a plant-specific protein and contains a weakly conserved α/β hydrolase fold domain that is found in several classes of lipid hydrolases and transferases. We have previously proposed that AXR4 may either act as (i) a post-translational modifying enzyme through its α/β hydrolase fold domain or (ii) an ER accessory protein, which is a special class of ER protein that regulates targeting of their cognate partner proteins. Here, we show that AXR4 is unlikely to act as a post-translational modifying enzyme as mutations in several highly conserved amino acids in the α/β hydrolase fold domain can be tolerated and active site residues are missing. We also show that AUX1 and AXR4 physically interact with each other and that AXR4 reduces aggregation of AUX1 in a dose-dependent fashion. Our results suggest that AXR4 acts as an ER accessory protein. A better understanding of AXR4-mediated trafficking of auxin transporters in crop plants will be crucial for improving root traits (designer roots) for better acquisition of water and nutrients for sustainable and resilient agriculture.

Funder

Biotechnology and Biological Sciences

Global Challenge Research Fund

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3