Natural overexpression of CAROTENOID CLEAVAGE DIOXYGENASE 4 in tomato alters carotenoid flux

Author:

Yoo Hee Ju1ORCID,Chung Mi-Young2,Lee Hyun-Ah3ORCID,Lee Soo-Bin1,Grandillo Silvana4ORCID,Giovannoni James J5ORCID,Lee Je Min1ORCID

Affiliation:

1. Department of Horticultural Science, Kyungpook National University , Daegu 41566 , Korea

2. Department of Agricultural Education, Sunchon National University , Suncheon 57922 , Korea

3. Division of Eco-Friendly Horticulture, Yonam College , Cheonan 31005 , Korea

4. CNR-Institute of Bioscience and Bioresources (IBBR), Via Università 133 , 80055 Portici , Italy

5. Boyce Thompson Institute and USDA-ARS Robert W. Holley Center, Tower Rd., Cornell University Campus , Ithaca, NY 14853 , USA

Abstract

Abstract Carotenoids and apocarotenoids function as pigments and flavor volatiles in plants that enhance consumer appeal and offer health benefits. Tomato (Solanum lycopersicum.) fruit, especially those of wild species, exhibit a high degree of natural variation in carotenoid and apocarotenoid contents. Using positional cloning and an introgression line (IL) of Solanum habrochaites “LA1777', IL8A, we identified carotenoid cleavage dioxygenase 4 (CCD4) as the factor responsible for controlling the dark orange fruit color. CCD4b expression in ripe fruit of IL8A plants was ∼8,000 times greater than that in the wild type, presumably due to 5′ cis-regulatory changes. The ShCCD4b-GFP fusion protein localized in the plastid. Phytoene, ζ-carotene, and neurosporene levels increased in ShCCD4b-overexpressing ripe fruit, whereas trans-lycopene, β-carotene, and lutein levels were reduced, suggestive of feedback regulation in the carotenoid pathway by an unknown apocarotenoid. Solid-phase microextraction–gas chromatography–mass spectrometry analysis showed increased levels of geranylacetone and β-ionone in ShCCD4b-overexpressing ripe fruit coupled with a β-cyclocitral deficiency. In carotenoid-accumulating Escherichia coli strains, ShCCD4b cleaved both ζ-carotene and β-carotene at the C9–C10 (C9′–C10′) positions to produce geranylacetone and β-ionone, respectively. Exogenous β-cyclocitral decreased carotenoid synthesis in the ripening fruit of tomato and pepper (Capsicum annuum), suggesting feedback inhibition in the pathway. Our findings will be helpful for enhancing the aesthetic and nutritional value of tomato and for understanding the complex regulatory mechanisms of carotenoid and apocarotenoid biogenesis.

Funder

National Research Foundation

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3