The regulatory module MdBT2–MdMYB88/MdMYB124–MdNRTs regulates nitrogen usage in apple

Author:

Zhang Dehui1,Yang Kuo2,Kan Zhiyong1,Dang Huan1,Feng Shuxian1,Yang Yusen1,Li Lei1,Hou Nan1,Xu Lingfei1,Wang Xiaofei2,Malnoy Mickael3,Ma Fengwang1ORCID,Hao Yujin2ORCID,Guan Qingmei1ORCID

Affiliation:

1. State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China

2. State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271000, China

3. Department of Biology and Genomics of Fruit Plants, Foundation Edmund Mach di San Michele all'Adige, Trento, Italy

Abstract

Abstract Less than 40% of the nitrogen (N) fertilizer applied to soil is absorbed by crops. Thus, improving the N use efficiency of crops is critical for agricultural development. However, the underlying regulation of these processes remains largely unknown, particularly in woody plants. By conducting yeast two-hybrid assays, we identified one interacting protein of MdMYB88 and MdMYB124 in apple (Malus × domestica), namely BTB and TAZ domain protein 2 (MdBT2). Ubiquitination and protein stabilization analysis revealed that MdBT2 ubiquitinates and degrades MdMYB88 and MdMYB124 via the 26S proteasome pathway. MdBT2 negatively regulates nitrogen usage as revealed by the reduced fresh weight, dry weight, N concentration, and N usage index of MdBT2 overexpression calli under low-N conditions. In contrast, MdMYB88 and MdMYB124 increase nitrate absorption, allocation, and remobilization by regulating expression of MdNRT2.4, MdNRT1.8, MdNRT1.7, and MdNRT1.5 under N limitation, thereby regulating N usage. The results obtained illustrate the mechanism of a regulatory module comprising MdBT2–MdMYB88/MdMYB124–MdNRTs, through which plants modulate N usage. These data contribute to a molecular approach to improve the N usage of fruit crops under limited N acquisition.

Funder

National Key Research and Development Project

National Natural Science Foundation of China

Apple Special Project of Shaanxi

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

Reference59 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3