HSP70-3 Interacts with Phospholipase Dδ and Participates in Heat Stress Defense

Author:

Song Ping1,Jia Qianru1,Xiao Xingkai1,Tang Yiwen1,Liu Chengjian1,Li Wenyan1,Li Teng1,Li Li12,Chen Huatao3,Zhang Wenhua1ORCID,Zhang Qun1ORCID

Affiliation:

1. College of Life Sciences, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, P.R. China

2. Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing 210014, P.R. China

3. Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China

Abstract

Abstract Heat shock proteins (HSPs) function as molecular chaperones and are key components responsible for protein folding, assembly, translocation, and degradation under stress conditions. However, little is known about how HSPs stabilize proteins and membranes in response to different hormonal or environmental cues in plants. Here, we combined molecular, biochemical, and genetic approaches to elucidate the involvement of cytosolic HSP70-3 in plant stress responses and the interplay between HSP70-3 and plasma membrane (PM)-localized phospholipase Dδ (PLDδ) in Arabidopsis (Arabidopsis thaliana). Analysis using pull-down, coimmunoprecipitation, and bimolecular fluorescence complementation revealed that HSP70-3 specifically interacted with PLDδ. HSP70-3 bound to microtubules, such that it stabilized cortical microtubules upon heat stress. We also showed that heat shock induced recruitment of HSP70-3 to the PM, where HSP70-3 inhibited PLDδ activity to mediate microtubule reorganization, phospholipid metabolism, and plant thermotolerance, and this process depended on the HSP70-3–PLDδ interaction. Our results suggest a model whereby the interplay between HSP70-3 and PLDδ facilitates the re-establishment of cellular homeostasis during plant responses to external stresses and reveal a regulatory mechanism in regulating membrane lipid metabolism.

Funder

National Natural Science Foundation of China

Excellent Youth Foundation of Jiangsu Scientific Committee

Jiangsu Agriculture Science and Technology Innovation Fund

Key R & D project of Jiangsu Province

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3