Transcriptional networks regulating suberin and lignin in endodermis link development and ABA response

Author:

Xu Huimin1ORCID,Liu Peng1ORCID,Wang Chunhua12ORCID,Wu Shasha1ORCID,Dong Chaoqun1ORCID,Lin Qingyun1ORCID,Sun Wenru1ORCID,Huang Benben1ORCID,Xu Meizhi1ORCID,Tauqeer Arfa1ORCID,Wu Shuang1ORCID

Affiliation:

1. College of Life Sciences, College of Horticulture, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University , Fuzhou, 350002, China

2. College of Horticulture, Hunan Agricultural University , Changsha, China

Abstract

Abstract Vascular tissues are surrounded by an apoplastic barrier formed by endodermis that is vital for selective absorption of water and nutrients. Lignification and suberization of endodermal cell walls are fundamental processes in establishing the apoplastic barrier. Endodermal suberization in Arabidopsis (Arabidopsis thaliana) roots is presumed to be the integration of developmental regulation and stress responses. In root endodermis, the suberization level is enhanced when the Casparian strip, the lignified structure, is defective. However, it is not entirely clear how lignification and suberization interplay and how they interact with stress signaling. Here, in Arabidopsis, we constructed a hierarchical network mediated by SHORT-ROOT (SHR), a master regulator of endodermal development, and identified 13 key MYB transcription factors (TFs) that form multiple sub-networks. Combined with functional analyses, we further uncovered MYB TFs that mediate feedback or feed-forward loops, thus balancing lignification and suberization in Arabidopsis roots. In addition, sub-networks comprising nine MYB TFs were identified that interact with abscisic acid signaling to integrate stress response and root development. Our data provide insights into the mechanisms that enhance plant adaptation to changing environments.

Funder

The National Key Research and Development Program of China

National Key Programs for bok choy Breeding of China

Scientific Research Foundation of Graduate School of Fujian Agriculture and Forestry University

Publisher

Oxford University Press (OUP)

Subject

Plant Science,Genetics,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3